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Midterm Exam Review


For the exam:

Questions may be conceptual, about the reasoning and procedures behind the analyses; calculational, in which equations would be employed to obtain results given summary data; applied, in which analyses must be described or conclusions drawn from SPSS output; definitional, which might call for brief explanation (a sentence or two) of terms or concepts; or some combination of these.

Null hypothesis significance testing, t-tests, and confidence intervals will not be tested per se, but it's assumed that you understand the meaning of each and can interpret them appropriately and accurately, e.g., in the context of evaluating regression coefficients.

Equations will be given with the exam and need not be memorized, but it's expectecd that you understand what they mean and are able to use them appropriately.

Bring a calculator and a textbook that has tables of the t and F distributions, such as Keppel and Wickens (2004); Keith (2006) does not have either! (If you don't have one, you'll certainly be able to borrow one.)

Introduction

familiarity with basic concepts of variance, covariance, correlation, hypothesis testing, t-tests. ANOVA

-
Keith's App. E  review of basic statistics as well as the end of his ch. 1; refer to the Howell chapters on hypothesis testing and t-tests if more explanation is needed to supplement your lecture notes.

Correlation

derivation from lecture (vs. Keith App. E; means are notated here as "M" for typographical convenience):

Sum of Squares (of deviations from the mean): SS = ((X-Mx)2 = ((X-Mx)(X-Mx)

Sum of Products (of deviations from the mean): SP = ((X-Mx)(Y-My) instead of ((X-Mx)(X-Mx) above

variance: s2 = MS = SS/df = ((X-M)2 / (N-1); standard deviation = (variance = (s2 = s
covariance: COVxy = SP/df = ((X-Mx)(Y-My) / (N-1)
rxy = COVxy/(sxsy) which is the standardized covariance; equivalent to covariance of the standardized (z) scores

r represents the size and direction of the relationship; r2 represents the proportion of variance shared

-
correlation is necessary but not sufficient for causality; research design must support causal inference

factors affecting size and/or significance of the correlation coefficient (note scatterplots in Wikipedia article):

-
linearity of the relationship (nonlinear, quadratic, etc. -> smaller r)

-
similarity of shapes of distributions, implied by linearity of relationship (less similar -> smaller r)

-
restriction of range (smaller range or fewer values of either variable -> smaller r)

-
dichotomizing one or both continuous variables is an implicit range restriction (dichotomizing -> smaller r)

-
variability in relationship between X and Y, i.e. size of residuals (more variability -> smaller r)

-
heterogeneous subsamples (subgroup differences on Y may artificially inflate rxy)

-
outliers (unusual or extreme data points -> larger or smaller r, depending on location in scatterplot)

-
number of observations (larger N -> smaller p-value / higher significance)

significance test for r using F with df = (k, N - k - 1): for a Pearson correlation coefficient k = 1 since one variable can arbitrarily be labeled the lone "predictor" or IV and the other one the "criterion" or DV.

-
F(k, N - k - 1) = (r2 / k) / [(1- r2) / (N - k - 1)]

-
equivalent to t(N - k - 1) = r / ([(1- r2) / (N - k - 1)] 

or rearranging and letting k = 1: t(N - 2) = r*((N - 2) / ((1- r2)


because t(dferr) = (F(1, dferr) all the time; and using k = 1 here, t(N - 2) = (F(1, N - 2)

-
when one variable is dichotomous (has only two values), r is rpb, the "point-biserial" correlation coefficient; when both are dichotomous, r is the "phi coefficient"; for these, r2 = t2 / (t2 + df) = t2 / (t2 + N - 2)

Reliability

reliability = repeatability when measured trait doesn't change; ratio of true variance/ total variance; limits size of correlation with other variables; estimated by correlation coefficient between two administrations of a measure

estimate reliabilty from test-retest correlation; alternate / parallel forms correlation; internal consistency, e.g., split-half or Cronbach's alpha; inter-rater agreement using Cohen's Kappa (see Notes On Kappa and Chi-Square)

Simple Regression

"regression to the mean" occurs whenever two variables are correlated less than 1.0, because every prediction is in effect a predicted degree of departure (based on X) from the most likely value, which is the mean of Y

General Linear Model: score is modeled in the population as a linear combination of weighted predictors, plus error or residual representing the part of Y that is unpredictable from the X's included in the equation

-
Y = ( + (1X1 + (2X2 + (3X3 ... + e

simple (one-predictor) regression: predicted Y = Y' = a + bX

-
no residual term in sample's regression equation because it yields a predicted score Y', not Y itself

calculation of regression line intercept (a) and coefficient (b)

-
for one-predictor "simple" regression, b = SP / SSx = covxy / s2x ; a = My - bMx 

-
a = value of Y' when X = 0

-
b = change in Y' for one unit change in X

residual = difference between observed score Y and predicted score Y'

R = (multiple) correlation between observed and predicted scores, therefore positive even if "little" r is negative

R2 as proportion of variance in dependent variable accounted for by predictor variable(s)

1-R2 as proportion of variance NOT accounted for by predictor(s)

SStot = total SS = SSy = SSreg + SSres
SSreg = regression SS = sum of squared deviations of predicted scores Y' from mean of dependent variable Y

SSres = residual SS = sum of squared deviations of observed scores Y from predicted scores Y'

proportion of variance accounted for in regression = SSreg / SStot = R2 

proportion of variance NOT accounted for in regression = SSres / SStot = 1 - R2 

standard error of estimate (notated variously as SEest, SEres, or sy.x)

= standard deviation of residuals (from regression line)

= ((variance of residuals) = (MSres = ((SSres/dfres)

= ([SSres / (N - k - 1)]

significance test for R (and for overall regression Y' = a + bX) using Sums of Squares form of F ratio:

-
F(k, N - k - 1) = (SSreg / k) / [SSres / (N - k - 1)]

and since dfreg = k and dfres  = N - k - 1:

F(k, N - k - 1) = (SSreg / dfreg) / (SSres / dfres) = MSreg / MSres
which is a ratio of two independent estimates of the same variance,  which is what an F ratio is

significance test for R (and for overall regression Y' = a + bX) using R2 form of F ratio:

-
F(k, N - k - 1) = (R2 / k) / [(1- R2) / (N - k - 1)]


which is the same as the Sum of Squares form of the F ratio, if each SS is divided by SStot (which cancel out in the division) to represent porportions of variance accounted for and unaccounted for:

-
F(k, N - k - 1) = [(SSreg / SStot) / k] / [(SSres / SStot) / (N - k - 1)]

significance test for individual predictor b-weight using t-test; note that a non-significant predictor should not be dropped from the model based on one sample's p-value, since theory presumably suggested it

-
standard error of b = SEb = SEest / (SSx for simple regression: s.d. of all possible b values in population

-
t(N - k - 1) = (b - () / SEb where ( is population value of slope typically tested as 0, in which case

t(N - k - 1) = b / SEb

basic assumptions for tests: linearity, independence, normality, homoscedasticity (homogeneity of variance)

unstandardized (b) vs. standardized (( "beta") coefficients

-
interpret ( as no. of standard deviations change in Y for one standard deviation change in X

-
( = r when predictors are uncorrelated (which includes the case of only one predictor)

-
standardized regression equation has intercept a = 0: zy = (1z1 + (2z2 + (3z3 ... 

-
to convert between ( & b use standard deviations and solve for one given the other: (sy = bsx
note what each of the following tells you: r, R2, b, (, standard error of estimate, standard error of b, p-values for regression and for coefficients, confidence interval for b (see Notes on Confidence Intervals)

advantages of regression over ANOVA (Keith p.17)

-
both categorical and continuous IVs allowed, whereas using continuous IVs in ANOVA (i.e., Analysis of Covariance "ANCOVA") is complicated and doesn't allow interaction between continuous and categorical IVs

-
effects of multiple IVs are interpretable even with  four or more at once, whereas interpreting 4-way (or more) factorial ANOVA becomes unwieldy due to many interactions (which aren't usually included in the regression)

-
appropriate for both experimental (manipulated) and non-experimental variables (true of ANOVA too though, so this shouldn't count in favor of regression)

-
effect size is naturally emphasized (R2, b, () rather than p-values, and linear model is made explicit

advantages of ANOVA: familiarity; simpler treatment of interaction and repeated measures; able to use different error terms for different effects in complex factorial design

Multiple Regression

multiple regression: predicted Y = Y' = a + b1X1 + b2X2 + b3X3 + ...

-
a = value of Y' when all X's have value of 0

-
b1 = change in Y' for one unit change in X1 when all other X's are held constant

R as multiple correlation coefficient and as correlation between observed and predicted scores

R2 as proportion of variance in criterion variable accounted for by all predictor variables

-
note that it is less than the sum of all the individual r2, unless all the X's are uncorrelated:


R2y12  = (r2y1 + r2y2 - 2ry1ry2r12) / (1-r212)


so if r12 = 0, R2y12  = (r2y1 + r2y2 - 2ry1ry2*0) / (1-0)

-
equations get out of hand for more than two predictors; matrix form is preferred then

N for stable (replicable) estimates should be about 20*k, 10*k is allowed, 5*k sometimes happens; Green (1991) suggests sample size of 50+8k for estimating R2, or 104 + k for estimating individual predictor b-weights
N from power analysis: use Cohen's effect size measure f2 = r2 / (1-r2); ANOVA analog is f = ([(2 / (1-(2)]

given that b-weights represent only the unique contribution of a predictor to explaining the variance in Y when all other predictors are held constant, it is generally the case that they (and the corresponding standardized (-weights) will change when any other variable is added to or removed from the equation.

-
this is because unless the other predictor is completely UNcorrelated with the first, that other predictor will change the amount of Y that remains unique to the predictor being examined.

interpretation of regression coefficients and the contextual effects of other predictors upon them assumes a theoretical model that can't be found in the data itself, but is the product of reasoned judgment and experience in investigating the various constructs and their measures.

interpretation of b vs. beta (see Table 2.1 on p. 36):

use b when: units of X are easily interpretable; for policy decisions or interventions; to compare coefficients for same predictor based on two different samples

use ( when: units of X are not readily interpretable; to compare coefficients for different predictors within a single sample's regression equation

reasoning:

-
b may be interpretable to a greater or lesser degree due to the units of X: if X represents height in inches, people can understand what b means, and if important decisions and actions are to be based on the predictions indicated by b this is likely to be the case; at any rate the predictions must be translatable into real-world practice and therefore into interpretable units.

-
but if the predictor X represents points on some Likert scale you made up (or that is otherwise not readily interpretable), that may convey almost no information and it would be preferable to report the slope in terms of standardized scores with ( as their coefficient.

-
b is dependent on the units of the measure (the b for height in feet will always be 12 times larger than if it were for the same height in inches), so comparing the standardized coefficients ( within an equation (all on the same z-score scale) will suggest which predictor actually pushes the criterion Y around more.

-
( is very closely tied to variability in the observations (as is its cousin the correlation coefficient) whereas the specific raw value of the slope b can remain fairly constant from sample to sample even through a wide cloud of scattered observations and a large SEb; so in comparing the slopes for a predictor across two DIFFERENT regression samples, it's best to avoid issues of different variances in the data affecting ( and just compare the raw slope values directly.

comparing b's across samples: if one sample's estimate of b falls within the second sample's confidence interval for b, it is not significantly different from that second sample's estimate; this can be done based on either sample's confidence interval and hopefully yields the same outcome, though it may not, depending on how different the two samples' estimated standard errors are.

-
to test the significance of the difference between the b's using their pooled standard errors, use Keith's z-test formula on p. 38 -- only treat it as a t-test with df = the sum of the df for each b, i.e., N1-2 + N2 -2.

multicollinearity

-
collinearity means one IV is highly predictable from another IV (i.e., they're highly correlated).

-
multicollinearity means one IV is highly predictable from a combination of other IVs, in the multiple regression sense (i.e., it has a high R2 when used as a DV with the other IVs as its predictors)

-
the consequences are that (1) estimates of coefficients end up being computed by dividing by very small decimal numbers, and so they can fluctuate wildly with slight changes in sampled predictor scores and are therefore unstable and not very replicable or generalizable; (2) as the denominator for the coefficient approaches dividing by 0, the calculation becomes undefined and impossible to carry out, at which point SPSS will refuse to do the analysis; called a "singularity" -- mathematically, a matrix's determinant is 0

-
multicollinearity diagnostics include (1) squared multiple correlations (R2 or "SMC") for each predictor used as a DV predicted by the other predictors -- should be no more than .90; (2) tolerance = 1-R2 , which should thus be no less than .10; and (3) variance inflation factor (VIF) = 1/tolerance, which should thus be no greater than 10; though often 7 is considered to be a high VIF, corresponding to a tolerance of .143 and thus a SMC of .857, somewhat more strict than the SMC of .90 just mentioned

-
address this by (1) dropping a redundant predictor, (2) combining some related predictors into a composite score, (3) doing principal components analysis and using the components in place of the original predictors

suppressor variable: variable that "suppresses" irrelevant variance in an IV without directly contributing to a DV (e.g., correlates with the IV and not the DV), but thereby paradoxically increases R2
-
not a case of real multicollinearity because though it's predictive of the IV, it's unrelated to the DV

-
other forms of suppression can occur; all are rare in psychological research

experimental vs. statistical control:

-
experimental control measures the characteristic to be controlled and selects or groups participants such that they have the same value for that control variable (e.g., homogeneous groups based on female vs. male; high, medium, and low test-scorers; first, second, and third graders).

-
statistical control removes the (linear) effect of the controlled predictor from another predictor of interest, to isolate the unique predictive power of the latter over and above the predictive power of the former.

-
this happens in every regression as a consequence of calculating b as the change in Y' for one unit change in X when all other X's are "held constant" -- but it may sometimes be interpreted explicitly as "controlling for" a particular X variable; this is a very useful tool, but keep in mind two things:

-
"control" in this sense may be viewed as highly artificial, since it refers to a situation that does not occur in the empirical world where measures do tend to vary together and can't be held constant in isolation.

-
"control" may also be viewed as superfluous, in that if you control for the wrong variables, your estimates and interpretation will be likewise wrong, while if your model is right, "control" is an unnecessary qualification since you will have accurately estimated the effect of that predictor within your model.

statistical control involves partial correlation (which is related to standard "simultaneous" regression) and semi-partial correlation (which is related to "sequential" regression).

partial and semi-partial correlation

-
partial correlation represents the correlation between a predictor X and the dependent variable Y when the overlapping predictive power of another predictor has been removed from both the X and the Y

-
semi-partial correlation represents the correlation between a predictor X and the dependent variable Y when the overlapping predictive power of another predictor has been removed from X but NOT from Y; in other words, the predictive power left to X is the same as in partial correlation, but the variance it's predicting is the TOTAL variance of Y, not just the Y variance that is unpredicted by the partialled control variable.

notation for subscripts for partial and semi-partial correlation coefficients:

-
sometimes notated as "pr" and "sr", but these are redundant with their subscripts which specify what is being partialled, so "r" is sufficient given the correct subscript.

-
variables after a dot have been partialled out / controlled for / had their effects removed from variables before the dot; e.g., r2y1.2 is the correlation between Y and X1 with X2's effect removed from both.

-
parentheses are used for semi-partial correlations; they mean that the partialling only applies to variables before the dot and INSIDE the parentheses, while nothing has been partialled out of the variables OUTSIDE the parentheses; typically the dependent variable Y appears outside the parentheses, though other variables may too; e.g., r2y(1.2) is the correlation between Y and X1 with X2's effect removed from X1 but not from Y.

Venn diagrams can illustrate squared partial and semi-partial correlations: proportions of variance accounted for are identified by (clearly labeled) ratios of overlapping areas in the diagram.

normal regression b-weights are technically "partial b-weights" since they are calculated so as to remove the effects of other predictors from both the predictor of interest and from the dependent variable Y; this is akin to eliminating a possible confounding of effects, wherein it's not clear which predictor variable deserves credit for predicting the part of Y variance that they predict in common.

-
this is noticeable from the similarities in the formulas for ( (the standardized version of b) and the partial and semi-partial correlations for the two-predictor case, all three of which differ only in their denominators:


(1 = (ry1 - ry2r12) / (1-r212)


ry1.2 = (ry1 - ry2r12) / [((1-r2y2)((1-r212)] <-- partial correlation


ry(1.2) = (ry1 - ry2r12) / ((1-r212) <-- semi-partial correlation

-
and you can get each correlation from (:

ry1.2 = (1 * ((1-r212) / ((1-r2y2) 

ry(1.2) = (1 * ((1-r212) 

Sequential Regression (also termed "hierarchical" regression)
assigning different predictors priority for their predictive power can be addressed by letting one predictor enter the equation "first" or "before" another, so that it can be the one to account for any variance in Y that might also be predictable from a "later" predictor. These priorities should be assigned on the basis of theory.

-
when no priorities are given, all predictors enter the equation "at the same time" as in the case of standard regression, which is therefore called "simultaneous" regression.

-
in sequential regression, we can compute an R2 for an "earlier" predictor, and then let the "later" predictor have credit for whatever increment it provides to that R2, over and above the contribution of the "earlier" predictor.

the squared partial correlation formula for Y and X1 works out to be the same as


r2y1.2 = (R2y12 - R2y2) / (1 - R2y2)

the squared semi-partial correlation formula for Y and X1 works out to be the same as


r2y(1.2) = (R2y12 - R2y2) / 1, which is just R2y12 - R2y2
these formulas again differ only in the denominator, that is, in the total amount of variance they're trying to account for; for the partial we try to account only for the variance that is left unexplained by X2, while for the semi-partial we try to account for the total variance in Y (which is why the denominator is 1).

significance tests for both partial and semi-partial correlation coefficients are equivalent to the significance test for the proportion of variance accounted for by the increment to R2.

-
calculate R2L for the regression using the larger number of variables and then R2S for the regression using the smaller number of variables; kL and kS are their respective numerator df's; then

F(kL - kS, N - kL - 1) = (R2L - R2S / kL - kS) / [(1- RL2) / (N - kL - 1)]

-
which for an increment from one variable such as R2y(1.2) would mean kL - kS = 2 - 1 = 1, e.g.,

F(1, N - 2 - 1) = (R2y12 - R2y2 / 1) / [(1- R2) / (N - 2 - 1)]

-
this F will also prove to be equal to the square of the t for the coefficient of the variable contributing the increment; i.e., the square of the value of t for b1, or  (b1 / SEb1)2

adjusted R2: to approximate the population value of R2
-
R2 can only increase as more variables are added, and will be 1.0 whenever k = N-1

-
adj. R2 (or R2adj) takes account of the number of predictors to scale down R2 using the formula


adj. R2 = 1 - [(1 - R2)*(N -1) / (N - k - 1)]


which in effect first INCREASES (1 - R2) by(N -1) / (N - k - 1), thus INCREASING the variance that is UNaccounted for (with a larger increase for more predictors k), and then subtracting that increased variance unaccounted for from 1 to arrive at the new DECREASED variance that actually IS accounted for.

-
note that if a useless predictor is added to the equation, the decrease in R2 due to the higher value for k may not be offset by any increase in R2 itself; thus while R2 will show at most a very slight increase, adj. R2 may well get smaller.

cross-validation: to generalize R to other samples:

-
regression equations capitalize on measurement error and sampling error, treating all X scores as if they were perfect indications of how the predictor stands in relation to the criterion Y.

-
but since there IS measurement error and sampling error, the next sample can't fit the regression equation quite as tightly as does the original sample from which the equation was computed.

-
applying a regression equation to a new sample therefore results in "shrinkage": the R2 between the Y scores observed in the new sample and those predicted for it from the old sample's equation will be smaller than the R2 obtained in the original sample, whose regression equation fits its observations, measurement error and all, like a glove.

-
cross-validation does just this, and then compares the two R2's -- if they are close enough, the regression is considered generalizable to other samples than the one it was computed from.

-
DOUBLE cross-validation also does the reverse: a regression equation is computed from the new sample and is then used to predict Y for the old sample's data; these R2's should likewise be close to each other and to the previous two.

-
instead of collecting two separate samples, typically a single sample is randomly split to compute the regression with half and check its generalizability on the other half; since stable regressions are based on large N's, the split is often 2/3 for the computation and 1/3 for the cross validation, rather than 50-50; even more common is the use of a formula which estimates the cross-validation R2; regardless of the procedure, if cross validation is successful all the observations are combined back into one larger sample so that a final set of even more stable regression coefficients can be computed from this larger N.

Venn diagrams can illustrate squared partial and semi-partial correlations: proportions of variance accounted for are identified by ratios of overlapping areas in the diagram.

These symbols and areas line up in the right order, but you can cover up one section at a time and generate the other for practice -- e.g., figure out what areas correspond to r2y2.1, then go the other way and notate what correlation is represented by "d / a+d".

with Y and 2 X's:

R2y12
r2y1.2
r2y2.1
r2y(1.2)
r2y(2.1) 

b+c+d / a+b+c+d

b / a+b

d / a+d

b / a+b+c+d

d / a+d+c+d

with Y and 3 X's (some quite tricky):

R2y123
r2y1.23
r2y13.2
r2y(1.23)
r2y(1.3)
r2y(23.1)
r2y1(2.3) 

[which of these is also = r2y1.2?]

b+d+e+f+h+i / a+b+d+e+f+h+i

b / a+b

b+f / a+b+f

b / a+b+d+e+f+h+i

b+e / a+b+d+e+f+h+i

d+i / a+b+d+e+f+h+i

b+e+f+h+d / a+b+d+e+f+h+i
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Introduction

K 491-510 [App. E, review of basic statistics concepts -- but see Howell for additional information about these concepts]

Howell Ch.4 [excellent and up-to-date treatment of the logic and controversies of hypothesis testing, possibly more accessible than Cohen's (1994) paper]

Howell Ch.7 [excellent treatment of the logic of the t-test, applied to the cases of a single sample mean, two related sample means, and two independent sample means; relation of t to z; confidence intervals described accurately on pp. 181-183]

Correlation

K 499-505 [section of App. E on correlation coefficient, with different derivation and formula than the one I use]

Keppel & Wickens (2004) excerpt on correlation coefficient

Reliability

Overview of reliability theory from William Trochim's on-line Research Methods Knowledge Base.

Notes on Cohen's Kappa and its relationship to Pearson's Chi-Square: describes the logic and calculation of each and how to obtain them in SPSS.

Simple Regression

K Ch. 1 [simple (one-predictor) regression; calculation of regression line intercept and coefficients; significance tests for prediction equation and individual predictor; unstandardized (b) vs. standardized (beta) coefficients; confidence intervals (but note p. 11 description is not completely accurate -- see Notes On Confidence Intervals and compare to Howell Ch.7 p. 182]

Multiple Regression: two predictors

K Ch. 2 [multiple correlation coefficient; interpretation of a and b's; experimental control vs. statistical control; partial and semi-partial correlation (covered in more detail in App. D, but in a way that may not be completely accessible to you at this point, and which employs the conventions of Table 10.17 on p. 235); interpretation of b vs. beta (see especially Table 2.1 on p. 36); formulas for beta, b, and R for the two-predictor case]

Multiple Regression: theoretical description of the two-predictor case

K Ch. 3 [interpretation of R-square with Venn diagrams]

Multiple Regression: the general case

K Ch. 4 [dependency of b-weights on other variables included in the equation; prediction and explanation]

K Ch. 5 p. 96 cross-validation; p. 97 adjusted R-square [with a different formula that is algebraically equivalent to the one I use, which is: R2 adj = 1 - (1 - R2)(N - 1)/(N - k - 1)] 

Multiple Regression: simultaneous, sequential, and stepwise procedures

K Ch. 5 [simultaneous regression means business as usual; sequential regression and F for increment to R-square; why you'll never use stepwise regression; adjusted R-square; cross-validation]


